환원주의 vs 전체론: 부분을 볼 것인가, 전체를 볼 것인가?

환원주의와 전체론

과학은 언제나 복잡한 세계를 이해하기 위해 단순화의 도구를 사용해왔다. 그 대표적인 접근이 바로 환원주의(reductionism)다. 반면, 최근에는 전체론(holism)이라는 상반된 관점이 중요성을 얻고 있다. 환원주의는 세상을 쪼개 분석하고, 전체론은 관계 속에서 의미를 찾는다. 이 두 시각은 마치 서로 반대편에 서 있는 것처럼 보이지만, 사실은 과학이 진화하는 과정에서 서로를 보완하며 발전해왔다. 이번 글에서는 환원주의와 전체론의 철학적 뿌리, 각자의 … 더 읽기

전체론이란 무엇인가: 환원주의와 『이기적 유전자』 그 이후

전체론이란

이전 글에서 우리는 환원주의와 『이기적 유전자』를 중심으로, 복잡한 현상을 단순한 단위로 설명하려는 사고방식을 살펴보았다. 이번 글에서는 그와 대조되는 전체론(holism)을 중심으로 이야기를 이어가고자 한다. 전체론은 “전체는 부분의 합 이상이다”라는 관점에서 출발한다. 생태계, 뇌과학, 복잡계 과학 등은 환원주의만으로는 설명할 수 없는 사례를 제시하며 전체론적 접근을 요구한다. 그렇다고 환원주의와 전체론이 서로 배타적인 것은 아니다. 오히려 두 관점은 과학을 … 더 읽기

환원주의란 무엇인가: 『이기적 유전자』로 본 과학의 사고방식

환원주의와 이기적 유전자

과학의 역사는 복잡한 현상을 단순하게 이해하려는 시도로 가득하다. 이러한 접근을 대표하는 사고방식이 바로 환원주의(reductionism)다. 환원주의는 모든 현상을 더 작은 구성 요소로 환원하여 설명할 수 있다고 본다. 이 관점은 뉴턴의 물리학, 화학의 원자론, 생물학의 분자생물학 등 과학 발전의 핵심 동력이었다. 특히 생물학에서는 리처드 도킨스의 『이기적 유전자』가 환원주의를 극적으로 보여준 사례로 꼽힌다. 도킨스는 진화를 개체나 집단이 아닌 … 더 읽기

맬서스 인구론이 찰스 다윈의 자연선택에 남긴 흔적

맬서스의 인구론과 다윈의 자연선택

맬서스 인구론은 18세기 말 영국 사회에 충격을 던졌다. 토머스 맬서스는 『인구론』에서 인구는 기하급수적으로 증가하지만 식량은 산술급수적으로만 늘어난다고 주장했다. 그 결과, 기근과 빈곤은 피할 수 없는 현실이라는 경고가 뒤따랐다. 산업혁명으로 번영하던 영국에서 이 이론은 불편한 진실로 받아들여졌으나, 동시에 자원의 한계라는 근본 문제를 제기했다. 수십 년 뒤, 젊은 찰스 다윈은 이 책을 읽고 생존 경쟁이라는 개념에 깊은 … 더 읽기

부모 혈액형으로 아이 혈액형 예측하기: 하디–바인베르크 평형으로 보는 유전 확률

하디–바인베르크 평형

하디–바인베르크 평형(Hardy–Weinberg equilibrium)은 세대를 거듭해도 집단 내 유전자 분포가 일정하게 유지된다는 집단유전학의 핵심 원리다. 이 개념은 단순히 학문적 모델에 그치지 않고, 부모의 혈액형으로 자녀의 혈액형을 예측할 수 있다는 사실과도 직접 연결된다. 혈액형은 대립유전자(A, B, O)의 조합으로 결정되며, 이러한 조합은 수학적으로 확률 계산이 가능하다. 실제로 교과서에서는 퍼넷 사각형을 활용해 이를 설명한다. 그러나 이 계산은 개별 가정을 … 더 읽기

유럽 왕가를 병들게 한 근친혼의 역사: 합스부르크 턱에서 혈우병까지

근친혼과 유전병

역사 속 유럽 왕가들은 권력과 혈통을 유지하기 위해 근친혼을 자주 선택하였다. 겉으로는 왕조의 정통성을 지키는 전략이었으나, 그 결과는 예기치 못한 질병과 쇠퇴로 이어졌다. 근친혼은 가까운 혈연끼리 이루어지는 혼인으로, 열성 유전자가 동시에 발현될 가능성을 크게 높인다. 실제로 합스부르크 가문에서 나타난 ‘합스부르크 턱’이나, 빅토리아 여왕 후손들에게 퍼진 ‘혈우병’은 잘 알려진 사례다. 나아가 이집트 파라오와 여러 귀족 가문에서도 … 더 읽기

다윈의 자연선택과 멘델 유전학, 그리고 이기적 유전자: 사회적 행동을 설명하는 진화의 언어

이기적 유전자

이기적 유전자라는 개념이 나오기 이전, 찰스 다윈의 자연선택 이론은 생물이 환경에 적응하며 변화한다는 사실을 밝혀냈다. 하지만 다윈의 시대에는 한 가지 퍼즐이 남아 있었다. 형질이 어떻게 자손에게 전해지는가 하는 문제였다. 그 답은 그레고어 멘델의 유전학에서 나왔다. 멘델의 법칙은 형질이 유전자라는 단위로 보존되며 전달된다는 사실을 보여주었다. 두 이론이 결합하면서 진화 연구는 비약적으로 발전했다. 이후 리처드 도킨스는 『이기적 … 더 읽기

DNA의 비밀: 염색사, 염색체, 유전자, 유전자 풀 이야기

대립 유전자 풀 염색체 염색사

생명 현상의 핵심에는 DNA가 있다. DNA는 염색체라는 구조 속에 존재하며, 유전자라는 단위를 통해 구체적인 형질을 결정한다. 같은 위치에 있으면서 서로 다른 정보를 가진 대립유전자는 개체마다 다양한 특성을 만들어낸다. 부모에게서 각각 받은 상동염색체는 우리가 가족과 닮으면서도 완전히 같지는 않은 이유를 설명한다. 그리고 집단 차원에서 모든 대립유전자를 아우르는 유전자 풀은 진화와 적응의 가능성을 보여준다. 이번 글에서는 염색사, … 더 읽기

진화의 과정: 개체선택설 vs 집단선택설, 유전자 풀로 읽는 자연선택의 비밀

진화 개체선택설과 집단선택설

진화는 생명체가 환경에 적응하며 변화하는 과정이다. 이 변화를 이해하려면 유전자의 역할을 살펴야 한다. 유전자는 단순한 DNA 조각이 아니라, 개체의 형질과 집단의 다양성을 결정하는 핵심 단위다. 특히 대립유전자는 한 유전자 자리에서 나타나는 다양한 형태로, 개체와 집단의 적응 전략을 이해하는 열쇠가 된다. 유전자 풀은 집단 전체의 유전적 다양성을 보여주며, 진화가 어떻게 진행되는지 파악할 수 있게 한다. 개체선택설과 … 더 읽기

별의 종류 완전 정리: 적색왜성, 백색왜성, 중성자별, 그리고 블랙홀

별의 종류

밤하늘을 올려다보면 수많은 별들이 반짝인다. 하지만 그 빛나는 점들이 모두 같은 종류의 별은 아니다. 별의 종류는 어떻게 구분될까? 어떤 별은 작고 오래 살며, 어떤 별은 태양보다 훨씬 밝고 크다가 짧은 생을 마친다. 별의 질량과 진화 과정에 따라, 적색왜성, 백색왜성, 중성자별, 초거성, 블랙홀 등 다양한 형태로 나뉜다. 별의 종류를 이해하면 단순히 우주의 빛을 구경하는 것을 넘어, … 더 읽기